
CTT Documentation

Thomas F. Düllmann and Andre van Hoorn

Sep 15, 2021

Contents:

1 Business Purpose 1

2 Technical Details 3

3 Getting Started 5
3.1 1. Preparing the Workspace with Credentials . 5
3.2 2. Attaching a Test Policy to the “Serverless ToDoList” . 6
3.3 3. Configuring the Test Scenario . 7
3.4 4. Executing CTT (using the RADON IDE) . 9
3.5 5. Executing CTT (using the CTT CLI Tool) . 9

4 Additional Information 11
4.1 Development and Downloads . 11
4.2 References . 11

5 Contact 13

6 Acknowledgments 15

i

ii

CHAPTER 1

Business Purpose

The Continuous Testing Tool (short: CTT) provides functionality for defining, generating, executing, and refining con-
tinuous tests of application functions, data pipelines, and microservices, as well as for reporting test results. CTT is
a standalone tool that extends the OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA)
ecosystem and the TOSCA-based RADON framework. While targeting to provide a general framework for contin-
uous quality testing, a particular focus of CTT is on testing workload-related quality attributes such as performance,
elasticity, and resource/cost efficiency.

1

http://www.oasis-open.org/committees/tosca
https://radon-h2020.eu/

CTT Documentation

2 Chapter 1. Business Purpose

CHAPTER 2

Technical Details

A user defines tests by adding them to a TOSCA service template for the application under test. We have extended
the set of TOSCA node types, relationship types, and policy types for expressing different types of tests and including
suitable test drivers. For instance, CTT allows the definition of a load test to be executed using a configured load driver
such as JMeter. After being deployed by a TOSCA orchestrator such as xOpera, the tests are executed and the test
results are made available to the user.

Via its REST-based interface, users can execute the continuous testing on-demand or include it as a part of the CI/CD
process. CTT is designed as an extensible framework that allows the definition of new test types, metrics, and tools.
CTT is publicly available under the Apache License 2.0 open-source license. CTT will integrate and extend parts of
the ContinuITy approach and tools for performance testing in continuous software engineering.

The following figure shows the workflow of the CTT tool.

The following videos provide a short overview of CTT as well as a whole webinar.

3

https://jmeter.apache.org/
https://github.com/xlab-si/xopera-opera
http://www.apache.org/licenses/
https://continuity-project.github.io/

CTT Documentation

4 Chapter 2. Technical Details

CHAPTER 3

Getting Started

The Continuous Testing Tool (CTT) provides the means to deploy the application that is supposed to be tested, the
so-called system under test (SUT), and a testing agent, the so-called test infrastructure (TI), that executes the defined
tests against the SUT. After the deployment has succeeded, the defined test is executed and the results are obtained.
Tests and test-related information are defined in the TOSCA models of the SUT and TI.

In this usage description, we go through the test of the “ServerlessToDoListAPI” and an endpoint test that makes sure
that the deployment was successful. The SUT is a FaaS-based implementation of a ToDo-list using AWS services,
especially AWS-Lambda functions. The TI consists of a Docker container of a test agent for CTT that is deployed on
top of a AWS EC2 instance.

To make this example work, some information is needed beforehand: AWS Access Key ID, AWS Secret Access Key,
AWS EC2 SSH Key Type (e.g., OPENSSH, RSA), AWS EC2 SSH Key (without the header and footer sections), AWS
EC2 SSH Key Name, AWS VPC Subnet ID.

The concrete steps are as follows:

3.1 1. Preparing the Workspace with Credentials

In order to use CTT in the context of the RADON IDE, some credentials need to be provided when the workspace is
created. The said credentials are required in order to deploy the SUT and the TI on the respective service providers’
infrastructures (e.g., AWS).

These credentials need to be filled in into the workspace configuration devfile.yaml before the workspace is created.
Listing 1 shows an exemplary excerpt of the devfile.yaml’s CTT env-section on how the fields need to be popu-
lated with the credentials.

env:
- name: OPERA_SSH_USER

value: "ubuntu"
- name: OPERA_SSH_IDENTITY_FILE

value: \"/tmp/aws-ec2\"
- name: AWS_ACCESS_KEY_ID

(continues on next page)

5

CTT Documentation

(continued from previous page)

value: \"AKSDF4353SFD3NMGXHERWQ\"
- name: AWS_SECRET_ACCESS_KEY

value: "6QYMAS4sdfhAHDJ1L+pfgqZt/9OcxUN8a1/vg/ly"
- name: SSH_KEY_TYPE

value: "OPENSSH"
- name: SSH_PRIV_KEY

value: >
c3BlbnNzaC1rZXktdjEAAAAABG5vbmUAAAA
NhAAAAAwEAAQAAAxUA9DcKpAwyCTystithD
[..]
Akawm0cQ55NZ76el6jzUWBDePeT7mmWUCfm
kVpfAebH2+m6/F/KpFE2Q8aFBhWSVD3SmX5
YPAAAAAAECCwQ=

Listing 1: Exemplary devfile.yaml environment-section for CTT credentials

Once these variables are set, the workspace can be created.

3.2 2. Attaching a Test Policy to the “Serverless ToDoList”

In order to assign the required information for testing an application (named “system under test” or abbreviated as
“SUT”) with CTT, first a model in GMT needs to be created. Within the model of the SUT, so-called policies add the
information about the tests that CTT will later execute.

In GMT, open your SUT in the topology modeler. On the top menu, click on the ‘Manage Policies’ button. In the now
opened dialogue, click on the blue button labeled ‘Add’. Then, enter a name for the policy you are about to create.
For example, “ToDoListEndpointTestPolicy” and choose the matching policy type for the test, which is {radon.
policies.testing}HttpEndpointTest in this case. Once you click on “Add”, the new policy is created and
is shown in the lower part of the dialog. To provide test-specific details, select the newly created policy, which extends
the dialog with the available properties, as seen in Figure 1.

6 Chapter 3. Getting Started

CTT Documentation

Figure 1: Screenshot of Test Policy Property Dialog

In the following, only the fields required for the current scenario will be covered.

The property ti_blueprint defines the blueprint of the test infrastructure the test is supposed to be executed with. The
test_id is a unique identifier for the test that can be defined individually.

The following properties, comprising path, hostname, method, expected_status, port, and use_https represent the
HTTP parameters for a request to the target system. The property hostname can either be filled with a fixed hostname
(e.g., google.com) or can take the name of a TOSCA output of the SUT (e.g., the dynamically created hostname of a
system deployed on an AWS EC2 instance).

The remaining fields are not mandatory in the current example and can be left empty.

Once the properties of the testing policy have been entered and saved, the testing policy needs to be assigned to a
component in the model.

In order to do so, click on the “Policies” button on the top menu and extend the policies for the component of your
choice. The previously created policy is listed there and can be activated by checking the checkbox under the “Is
Activated?” label as depicted in Figure 2.

Figure 2: Screenshot of Test Policy Activation

3.3 3. Configuring the Test Scenario

Once the workspace is started and completely loaded, we create a new directory that holds all files that are needed to
execute CTT. In this example, we name it “ServerlessToDoList”. The CSAR files of the Serverless ToDo-List API
service template and the CTT DeploymentTest agent are put into this directory, as well as an inputs.yaml file that
provides some inputs needed for the deployment of the TI. The fields to fill are highlighted in bold in Listing 2.

vpc_subnet_id: "subnet-04706a8b41abdefa5"
ssh_key_name: "awsec2"

(continues on next page)

3.3. 3. Configuring the Test Scenario 7

CTT Documentation

(continued from previous page)

ssh_key_file: "/tmp/aws-ec2"
... |

Listing 2: Exemplary inputs.yaml file

The configuration of the CTT execution itself is specified by a YAML configuration file. In this file, the following
properties need to be defined:

• Name for the test configuration

• Folder, the artifacts are placed in

• SUT CSAR path (relative to the folder)

• SUT inputs file (optional, relative to the folder)

• TI CSAR path (relative to the folder)

• TI inputs file (optional, relative to the folder)

• Test Id of the test to be executed (not yet taken into account)

• Results output file path (relative to configuration file)

In Listing 3, you can find an exemplary CTT configuration file named ctt_config.yaml

{
"name": "ServerlessToDoList-DeploymentTest",
"repository_url": "ServerlessToDoList",
"sut_tosca_path": "todolist.csar",
"ti_tosca_path": "deploymentTestAgent.csar",
"ti_inputs_path": "inputs.yaml",
"test_id": "test_1",
"result_destination_path": "serverless-test-results.zip"

}

Listing 3: Exemplary ctt_config.yaml file

Please note that the folder property is currently named repository_url for historical reasons. In the future, this property
will be renamed.

Figure 19: ServerlessToDoListAPI scenario in the RADON IDE

8 Chapter 3. Getting Started

CTT Documentation

3.4 4. Executing CTT (using the RADON IDE)

After all preparations are finished, you can right-click on the ctt_config.yaml file and choose the option RadonCTT:
Execute test configuration.

Figure 20: Progress log in the output panel

The progress can be seen in the output panel (see Figure 20) and a progress bar appears on the lower right. Depending
on the underlying infrastructure, this process can take some time until the process is finished. Once the process is
finished, you find the results in a ZIP-file located where you specified the result_destination_path.

3.5 5. Executing CTT (using the CTT CLI Tool)

In addition to the possibility to execute CTT from within the RADON IDE, we also provide a command-line tool
called the “CTT CLI Tool” which allows the execution of CTT from the command line. The CLI Tool can be used as
part of continuous integration or in any other kind of automated process.

Similarly to the execution using the RADON IDE, the CTT CLI Tool, which is written in Python, uses the same
configuration file format (see Listing 3) to define the parameters for a test execution.

Listing 4 shows the usage of the CTT CLI Tool and the respective invocation for the example configuration file. The
two mandatory parameters are the URL of the CTT server as well as the configuration file that should be used for the
execution.

% ./ctt_cli.py --help
ctt-cli.py [PARAMS]

Mandatory parameters:
-u, --url=CTT_SERVER_URL URL of the CTT server
-c, --config=CTT_CONFIG Path to the CTT configuration file

Other parameters:
-v, --verbose Be verbose
-h, --help Print this help

% ./ctt_cli.py -u "http://localhost:18080/RadonCTT" -c ctt_config.yaml

Listing 4: Usage and invocation of the CTT CLI Tool

3.4. 4. Executing CTT (using the RADON IDE) 9

CTT Documentation

10 Chapter 3. Getting Started

CHAPTER 4

Additional Information

4.1 Development and Downloads

• Project dashboard: https://github.com/orgs/radon-h2020/projects/2

• Source code repositories

– CTT server: https://github.com/radon-h2020/radon-ctt

– CTT agent: https://github.com/radon-h2020/radon-ctt-agent

– CTT particles: https://github.com/radon-h2020/radon-particles

• Issue tracking: https://github.com/radon-h2020/radon-ctt/issues

• Demos

– ToDoList API: https://github.com/radon-h2020/demo-ctt-todolistapi

– SockShop: https://github.com/radon-h2020/demo-ctt-sockshop

– ImageResize: https://github.com/radon-h2020/demo-ctt-imageresize

– RADON Demonstrator: https://github.com/radon-h2020/radon-demonstrator

4.2 References

• Alim Ul Gias, André van Hoorn, Lulai Zhu, Giuliano Casale, Thomas F. Düllmann, Michael Wurster: Perfor-
mance Engineering for Microservices and Serverless Applications: The RADON Approach. ICPE Companion
2020: 46-49 https://doi.org/10.1145/3375555.3383120

• RADON Deliverable 3.4: Continuous Testing Tool I

• RADON Deliverable 3.5: Continuous Testing Tool II

11

https://github.com/orgs/radon-h2020/projects/2
https://github.com/radon-h2020/radon-ctt
https://github.com/radon-h2020/radon-ctt-agent
https://github.com/radon-h2020/radon-particles
https://github.com/radon-h2020/radon-ctt/issues
https://github.com/radon-h2020/demo-ctt-todolistapi
https://github.com/radon-h2020/demo-ctt-sockshop
https://github.com/radon-h2020/demo-ctt-imageresize
https://github.com/radon-h2020/radon-demonstrator
https://doi.org/10.1145/3375555.3383120
https://radon-h2020.eu/wp-content/uploads/2020/07/D3.4-Continuous-testing-tool-I.pdf
https://radon-h2020.eu/wp-content/uploads/2021/09/D3.5-Continuous-testing-tool-II.pdf

CTT Documentation

12 Chapter 4. Additional Information

CHAPTER 5

Contact

• Thomas F. Düllmann and Andre van Hoorn, Institute of Software Technology, University of Stuttgart, Germany

13

https://www.iste.uni-stuttgart.de/de/institut/team/Duellmann/
https://www.iste.uni-stuttgart.de/institute/team/van-Hoorn/

CTT Documentation

14 Chapter 5. Contact

CHAPTER 6

Acknowledgments

This work is being supported by the European Union’s Horizon 2020 research and innovation programme (grant no.
825040, RADON).

15

	Business Purpose
	Technical Details
	Getting Started
	1. Preparing the Workspace with Credentials
	2. Attaching a Test Policy to the “Serverless ToDoList”
	3. Configuring the Test Scenario
	4. Executing CTT (using the RADON IDE)
	5. Executing CTT (using the CTT CLI Tool)

	Additional Information
	Development and Downloads
	References

	Contact
	Acknowledgments

